Last Time.

(1) We "defined" differential forms

 $\Omega^*(M) \stackrel{\text{\tiny def}}{=} \Omega^0(M) \oplus \dots \oplus \Omega^{\dim M}(M)$

where $\Omega^0(M) = C^\infty(M)$ and

 $\Omega^k(M) = \Gamma(\Lambda^k(T^*M)) = \{ w : M \to \Lambda^k(T^*M) \mid w_q \in \Lambda^k(T^*_qM) \; \forall q \in M \}$

(2) Given a map between manifolds $F: M \to N$ we defined the pullback $F^*: \Omega^*(N) \to \Omega^*(M)$, a map of algebras as follows. This definition amounts to the following. If f is a zero form (i.e., a function) then

$$F^*f = f \circ F.$$

For all k > 0 and all $\alpha \in \Omega^k(N)$

 $(F^*\alpha)_q(v_1,\ldots,v_k) = \alpha_{F(q)}(\mathrm{d}F_q v_1,\ldots,\mathrm{d}F_q v_k),$

for all $q \in M, v_1, \ldots, v_k \in T_q M$. (This is not how one *computes* pullbacks.)

The goal of today's lecture is to define integration of compactly supported differential forms on oriented manifolds. We first observe:

Proposition 24.1. If $U, V \in \mathbb{R}^n$ are open sets and $F: U \to V$ is a C^{∞} map then $F^*(f(x) dx_1 \wedge \cdots \wedge dx_n) = [f \circ F(x)] \det(dF_x) dx_1 \wedge \cdots \wedge dx_n$.

Proof. Homework 8 problem 4.

Definition 24.2. For a k-form $\mu \in \Omega^k(M)$ we define its support supp (μ) to be the closure of the set of points where the form is nonzero:

$$\operatorname{supp}(\mu) \stackrel{\text{def}}{=} \{ q \in M \mid \mu_q \neq 0 \}.$$

Notation. $\Omega_c^k = \{\mu \in \Omega^k(M) \mid \text{supp}(\mu) \text{ is compact}\}, \text{ the space of compactly supported } k$ -forms.

Definition 24.3. A manifold M is *orientable* if there exists an atlas $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m\}$ such that for all α and β we have det $(d(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})) > 0$.

Definition 24.4. A choice of such an atlas in Definition 24.3 is an orientation.

Definition 24.5. Two orientations are the same if their union is also an orientation.

Example 24.6. \mathbb{R}^n has a canonical orientation {id : $\mathbb{R}^n \to \mathbb{R}^n$ }.

Example 24.7. $\{\varphi : \mathbb{R}^n \to \mathbb{R}^n\}$ such that $\varphi(x_1, \ldots, x_n) = (-x_1, x_2, \ldots, x_n)$ is an orientation of \mathbb{R}^n that is not the canonical orientation.

Example 24.8. $\{\psi : \mathbb{R}^n \to \mathbb{R}^n \mid n > 1\}$ such that $\psi(x_1, \ldots, x_n) = (x_2, x_1, x_3, \ldots, x_n)$ is an orientation which is the same as the one in Example 24.7.

Given an oriented manifold M with dim M = m we will define a linear map $\int_M : \Omega_c^m(M) \to \mathbb{R}$, the integration map, in several steps.

Step 1. $U \subseteq \mathbb{R}^m$ open, $\mu \in \Omega^m_c(M)$, $\mu = f \, dx_1 \wedge \cdots \wedge dx_m$, and $f \in C^{\infty}$, then

$$\int_{U} f \, \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_m \stackrel{\text{def}}{=} \int_{U} f(x) \, \mathrm{d}x_1 \cdots \mathrm{d}x_m$$

Step 2. M a manifold, $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m\}$ an atlas which orients $M, \mu \in \Omega_c^m(M)$ with supp $\mu \subseteq U_{\alpha}$ for some α , then

$$\int_{M} \mu \stackrel{\text{def}}{=} \int_{\varphi_{\alpha}(U_{\alpha})} (\varphi_{\alpha}^{-1})^{*} \mu$$

To make sure that this definition makes sense we need to prove

Proposition 24.9. Suppose $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m$ and $\psi : U_{\alpha} \to \mathbb{R}^m$ are two coordinate chart with $\det d(\psi \circ \varphi_{\alpha}^{-1}) > 0$. Then

$$\int_{\psi(U_{\alpha})} (\psi^{-1})^* \mu = \int_{\varphi_{\alpha}(U_{\alpha})} (\varphi_{\alpha}^{-1})^* \mu$$

Proof. It is enough to show that for every diffeomorphism $F: W \to V, \forall W, V \subseteq \mathbb{R}^m, \forall \nu \in \Omega_c^m(V)$

$$\int_{W} F^* \nu = \int_{V=F(W)}$$

Let $\nu = f(y) \, dy_1 \wedge \dots \wedge dy_m$ for some $f \in C_c^{\infty}(V)$. Then

$$\int_{V} \nu = \int_{V} f(y) \, \mathrm{d} y_1 \cdots \mathrm{d} y_m$$

 ν

But $F^*\nu = f(F(x)) \det(\mathrm{d}F_x) \,\mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_m$ and so

$$\int_{V} F^{*}\nu = \int_{W} f(F(x)) \det(\mathrm{d}F_{x}) \,\mathrm{d}x_{1} \cdots \mathrm{d}x_{m}$$
$$= \int_{W} f(F(x)) \left| \det(\mathrm{d}F_{x}) \right| \,\mathrm{d}x_{1} \cdots \mathrm{d}x_{m}$$
$$= \int_{W} f(y) \,\mathrm{d}y_{1} \cdots \mathrm{d}y_{m}$$

where the last equality is holds by the change of variables formula.

Step 3. General case: Let $\mu \in \Omega_c^m(M)$ be arbitrary. Pick an atlas which gives M its orientation, say $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m\}_{\alpha \in A}$. Since $\sup \mu$ is compact $\exists \alpha_1, \ldots, \alpha_k$ such that $\sup \mu \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$. Let $U_0 = M \setminus \operatorname{supp} \mu$. Let $\{\rho_0, \ldots, \rho_k\}$ be a partition of unity subordinate to $\{U_0, U_{\alpha_1}, \ldots, U_{\alpha_k}\}$, i.e. $\operatorname{supp} \rho_0 \subseteq M \setminus \operatorname{supp} \mu$, $\operatorname{supp} \rho_j \subseteq U_{\alpha_j}$ for $j \geq 1$. Now define

$$\int_{M} \mu \stackrel{\text{def}}{=} \sum_{j=1}^{k} \int_{U_{\alpha_j}} \rho_j M$$

We need to check that the right-hand side does not depend on choices. Suppose that $\{\psi_i : V_i \to \mathbb{R}^m\}_{i=1}^l$ is another collection of coordinate charts with $\sup \mu \subseteq \bigcup_{i=1}^l V_i$ (with $V_0 = M \setminus \sup \mu$). $\{\tau_i\}_{i=0}^l$ is a partition of unity subordinate to $\{V_i\}_{i=0}^l$ and det $(d(\varphi \alpha_j \circ \psi_i^{-1})) > 0$ for all i, j. Then

$$\int_{\psi_i(V_i \cap U_{\alpha_j})} (\psi_i^{-1})^* \rho_j \tau_i \mu = \int_{\varphi_{\alpha_j}(V_i \cap U_{\alpha_j})} (\varphi_{\alpha_j}^{-1})^* \rho_j \tau_i \mu$$

by Proposition 24.9 and therefore

$$\sum_{j} \int_{U_{\alpha_{j}}} (\rho_{j}\mu) = \sum_{j} \int_{\varphi_{\alpha_{j}}(U_{\alpha_{j}})} (\varphi_{\alpha_{j}})^{*} (\rho_{j}\mu)$$

$$= \sum_{j} \int_{\varphi_{\alpha_{j}}(U_{\alpha_{j}})} (\varphi_{\alpha_{j}})^{*} \rho_{j} (\sum_{i} \tau_{i}\mu)$$

$$= \sum_{i,j} \int_{\varphi_{\alpha_{j}}(U_{\alpha_{j}}\cap V_{i})} (\varphi_{\alpha_{j}})^{*} \rho_{j} \tau_{i}\mu$$

$$= \sum_{i,j} \int_{V_{i}} \tau_{i}\mu$$

We conclude that $\int_M : \Omega_c^m(M) \to \mathbb{R}$ is well-defined. Note that it does depend on the choice of an orientation.

Typeset by R. S. Kueffner II