Last Time.
(1) We "defined" differential forms

$$
\Omega^{*}(M) \stackrel{\text { def }}{=} \Omega^{0}(M) \oplus \cdots \oplus \Omega^{\operatorname{dim} M}(M)
$$

where $\Omega^{0}(M)=C^{\infty}(M)$ and

$$
\Omega^{k}(M)=\Gamma\left(\Lambda^{k}\left(T^{*} M\right)\right)=\left\{w: M \rightarrow \Lambda^{k}\left(T^{*} M\right) \mid w_{q} \in \Lambda^{k}\left(T_{q}^{*} M\right) \forall q \in M\right\}
$$

(2) Given a map between manifolds $F: M \rightarrow N$ we defined the pullback $F^{*}: \Omega^{*}(N) \rightarrow \Omega^{*}(M)$, a map of algebras as follows. This definition amounts to the following. If f is a zero form (i.e., a function) then

$$
F^{*} f=f \circ F
$$

For all $k>0$ and all $\alpha \in \Omega^{k}(N)$

$$
\left(F^{*} \alpha\right)_{q}\left(v_{1}, \ldots, v_{k}\right)=\alpha_{F(q)}\left(\mathrm{d} F_{q} v_{1}, \ldots, \mathrm{~d} F_{q} v_{k}\right)
$$

for all $q \in M, v_{1}, \ldots, v_{k} \in T_{q} M$. (This is not how one computes pullbacks.)
The goal of today's lecture is to define integration of compactly supported differential forms on oriented manifolds. We first observe:

Proposition 24.1. If $U, V \in \mathbb{R}^{n}$ are open sets and $F: U \rightarrow V$ is a C^{∞} map then $F^{*}\left(f(x) \mathrm{d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n}\right)=$ $[f \circ F(x)] \operatorname{det}\left(\mathrm{d} F_{x}\right) \mathrm{d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n}$.
Proof. Homework 8 problem 4.
Definition 24.2. For a k-form $\mu \in \Omega^{k}(M)$ we define its support $\operatorname{supp}(\mu)$ to be the closure of the set of points where the form is nonzero:

$$
\operatorname{supp}(\mu) \stackrel{\text { def }}{=} \overline{\left\{q \in M \mid \mu_{q} \neq 0\right\}}
$$

Notation. $\Omega_{c}^{k}=\left\{\mu \in \Omega^{k}(M) \mid \operatorname{supp}(\mu)\right.$ is compact $\}$, the space of compactly supported k-forms.
Definition 24.3. A manifold M is orientable if there exists an atlas $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}\right\}$ such that for all α and β we have $\operatorname{det}\left(\mathrm{d}\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right)\right)>0$.
Definition 24.4. A choice of such an atlas in Definition 24.3 is an orientation.
Definition 24.5. Two orientations are the same if their union is also an orientation.
Example 24.6. \mathbb{R}^{n} has a canonical orientation $\left\{\mathrm{id}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$.
Example 24.7. $\left\{\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right\}$ such that $\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$ is an orientation of \mathbb{R}^{n} that is not the canonical orientation.
Example 24.8. $\left\{\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid n>1\right\}$ such that $\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, x_{1}, x_{3}, \ldots, x_{n}\right)$ is an orientation which is the same as the one in Example 24.7.

Given an oriented manifold M with $\operatorname{dim} M=m$ we will define a linear map $\int_{M}: \Omega_{c}^{m}(M) \rightarrow \mathbb{R}$, the integration map, in several steps.
Step 1. $U \subseteq \mathbb{R}^{m}$ open, $\mu \in \Omega_{c}^{m}(M), \mu=f \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{m}$, and $f \in C^{\infty}$, then

$$
\int_{U} f \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{m} \stackrel{\text { def }}{=} \int_{U} f(x) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{m}
$$

Step 2. M a manifold, $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}\right\}$ an atlas which orients $M, \mu \in \Omega_{c}^{m}(M)$ with supp $\mu \subseteq U_{\alpha}$ for some α, then

$$
\int_{M} \mu \stackrel{\text { def }}{=} \int_{\varphi_{\alpha}\left(U_{\alpha}\right)}\left(\varphi_{\alpha}^{-1}\right)^{*} \mu
$$

To make sure that this definition makes sense we need to prove
Proposition 24.9. Suppose $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}$ and $\psi: U_{\alpha} \rightarrow \mathbb{R}^{m}$ are two coordinate chart with $\operatorname{det} \mathrm{d}\left(\psi \circ \varphi_{\alpha}^{-1}\right)>$ 0 . Then

$$
\int_{\psi\left(U_{\alpha}\right)}\left(\psi^{-1}\right)^{*} \mu=\int_{\varphi_{\alpha}\left(U_{\alpha}\right)}\left(\varphi_{\alpha}^{-1}\right)^{*} \mu
$$

Proof. It is enough to show that for every diffeomorphism $F: W \rightarrow V, \forall W, V \subseteq \mathbb{R}^{m}, \forall \nu \in \Omega_{c}^{m}(V)$

$$
\int_{W} F^{*} \nu=\int_{V=F(W)} \nu
$$

Let $\nu=f(y) \mathrm{d} y_{1} \wedge \cdots \wedge \mathrm{~d} y_{m}$ for some $f \in C_{c}^{\infty}(V)$. Then

$$
\int_{V} \nu=\int_{V} f(y) \mathrm{d} y_{1} \cdots \mathrm{~d} y_{m}
$$

But $F^{*} \nu=f(F(x)) \operatorname{det}\left(\mathrm{d} F_{x}\right) \mathrm{d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{m}$ and so

$$
\begin{aligned}
\int_{V} F^{*} \nu & =\int_{W} f(F(x)) \operatorname{det}\left(\mathrm{d} F_{x}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{m} \\
& =\int_{W} f(F(x))\left|\operatorname{det}\left(\mathrm{d} F_{x}\right)\right| \mathrm{d} x_{1} \cdots \mathrm{~d} x_{m} \\
& =\int_{W} f(y) \mathrm{d} y_{1} \cdots \mathrm{~d} y_{m}
\end{aligned}
$$

where the last equality is holds by the change of variables formula.
Step 3. General case: Let $\mu \in \Omega_{c}^{m}(M)$ be arbitrary. Pick an atlas which gives M its orientation, say $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}\right\}_{\alpha \in A}$. Since supp μ is compact $\exists \alpha_{1}, \ldots, \alpha_{k}$ such that supp $\mu \subseteq U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{k}}$. Let $U_{0}=M \backslash \operatorname{supp} \mu$. Let $\left\{\rho_{0}, \ldots, \rho_{k}\right\}$ be a partition of unity subordinate to $\left\{U_{0}, U_{\alpha_{1}}, \ldots, U_{\alpha_{k}}\right\}$, i.e. $\operatorname{supp} \rho_{0} \subseteq M \backslash \operatorname{supp} \mu, \operatorname{supp} \rho_{j} \subseteq U_{\alpha_{j}}$ for $j \geq 1$. Now define

$$
\int_{M} \mu \stackrel{\text { def }}{=} \sum_{j=1}^{k} \int_{U_{\alpha_{j}}} \rho_{j} M
$$

We need to check that the right-hand side does not depend on choices. Suppose that $\left\{\psi_{i}: V_{i} \rightarrow\right.$ $\left.\mathbb{R}^{m}\right\}_{i=1}^{l}$ is another collection of coordinate charts with $\operatorname{supp} \mu \subseteq \bigcup_{i=1}^{l} V_{i}\left(\right.$ with $\left.V_{0}=M \backslash \operatorname{supp} \mu\right)$. $\left\{\tau_{i}\right\}_{i=0}^{l}$ is a partition of unity subordinate to $\left\{V_{i}\right\}_{i=0}^{l}$ and $\operatorname{det}\left(\mathrm{d}\left(\varphi \alpha_{j} \circ \psi_{i}^{-1}\right)\right)>0$ for all i, j. Then

$$
\int_{\psi_{i}\left(V_{i} \cap U_{\alpha_{j}}\right)}\left(\psi_{i}^{-1}\right)^{*} \rho_{j} \tau_{i} \mu=\int_{\varphi_{\alpha_{j}}\left(V_{i} \cap U_{\alpha_{j}}\right)}\left(\varphi_{\alpha_{j}}^{-1}\right)^{*} \rho_{j} \tau_{i} \mu
$$

by Proposition 24.9 and therefore

$$
\begin{aligned}
\sum_{j} \int_{U_{\alpha_{j}}}\left(\rho_{j} \mu\right) & =\sum_{j} \int_{\varphi_{\alpha_{j}}\left(U_{\alpha_{j}}\right)}\left(\varphi_{\alpha_{j}}\right)^{*}\left(\rho_{j} \mu\right) \\
& =\sum_{j} \int_{\varphi_{\alpha_{j}}\left(U_{\alpha_{j}}\right)}\left(\varphi_{\alpha_{j}}\right)^{*} \rho_{j}\left(\sum_{i} \tau_{i} \mu\right) \\
& =\sum_{i, j} \int_{\varphi_{\alpha_{j}}\left(U_{\alpha_{j}} \cap V_{i}\right)}\left(\varphi_{\alpha_{j}}\right)^{*} \rho_{j} \tau_{i} \mu \\
& =\sum_{i, j} \int_{\psi_{i}\left(U_{\alpha_{j}} \cap V_{i}\right)}\left(\psi_{i}^{-1}\right)^{*} \rho_{j} \tau_{i} \mu \\
& =\sum \int_{V_{i}} \tau_{i} \mu
\end{aligned}
$$

We conclude that $\int_{M}: \Omega_{c}^{m}(M) \rightarrow \mathbb{R}$ is well-defined. Note that it does depend on the choice of an orientation.

