
Lecture 24 Differentiable Manifolds 10/17/2011

Last Time.
(1) We “defined” differential forms

Ω∗(M) def= Ω0(M)⊕ · · · ⊕ ΩdimM (M)

where Ω0(M) = C∞(M) and

Ωk(M) = Γ(Λk(T ∗M)) = {w : M → Λk(T ∗M)
∣∣ wq ∈ Λk(T ∗qM) ∀q ∈M}

(2) Given a map between manifolds F : M → N we defined the pullback F ∗ : Ω∗(N)→ Ω∗(M), a map
of algebras as follows. This definition amounts to the following. If f is a zero form (i.e., a function)
then

F ∗f = f ◦ F.
For all k > 0 and all α ∈ Ωk(N)

(F ∗α)q(v1, . . . , vk) = αF (q)(dFqv1, . . . ,dFqvk),

for all q ∈M , v1, . . . , vk ∈ TqM . (This is not how one computes pullbacks.)

The goal of today’s lecture is to define integration of compactly supported differential forms on oriented
manifolds. We first observe:

Proposition 24.1. If U, V ∈ Rn are open sets and F : U → V is a C∞map then F ∗(f(x) dx1∧· · ·∧dxn) =
[f ◦ F (x)] det(dFx) dx1 ∧ · · · ∧ dxn.

Proof. Homework 8 problem 4. �

Definition 24.2. For a k-form µ ∈ Ωk(M) we define its support supp(µ) to be the closure of the set of
points where the form is nonzero:

supp(µ) def= {q ∈M
∣∣ µq 6= 0}.

Notation. Ωkc = {µ ∈ Ωk(M)
∣∣ supp(µ) is compact}, the space of compactly supported k-forms.

Definition 24.3. A manifold M is orientable if there exists an atlas {ϕα : Uα → Rm} such that for all α
and β we have det

(
d(ϕβ ◦ ϕ−1

α )
)
> 0.

Definition 24.4. A choice of such an atlas in Definition 24.3 is an orientation.

Definition 24.5. Two orientations are the same if their union is also an orientation.

Example 24.6. Rn has a canonical orientation {id : Rn → Rn}.
Example 24.7. {ϕ : Rn → Rn} such that ϕ(x1, . . . , xn) = (−x1, x2, . . . , xn) is an orientation of Rn that is
not the canonical orientation.

Example 24.8. {ψ : Rn → Rn
∣∣ n > 1} such that ψ(x1, . . . , xn) = (x2, x1, x3, . . . , xn) is an orientation

which is the same as the one in Example 24.7.

Given an oriented manifold M with dimM = m we will define a linear map
∫
M

: Ωmc (M)→ R, the integration
map, in several steps.
Step 1. U ⊆ Rm open, µ ∈ Ωmc (M), µ = f dx1 ∧ · · · ∧ dxm, and f ∈ C∞, then∫

U

f dx1 ∧ · · · ∧ dxm
def=
∫
U

f(x) dx1 · · · dxm

Step 2. M a manifold, {ϕα : Uα → Rm} an atlas which orients M , µ ∈ Ωmc (M) with suppµ ⊆ Uα for some
α, then ∫

M

µ def=
∫
ϕα(Uα)

(ϕ−1
α )∗µ

To make sure that this definition makes sense we need to prove

Proposition 24.9. Suppose ϕα : Uα → Rm and ψ : Uα → Rm are two coordinate chart with det d(ψ ◦ ϕ−1
α ) >

0. Then ∫
ψ(Uα)

(ψ−1)∗µ =
∫
ϕα(Uα)

(ϕ−1
α )∗µ
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Proof. It is enough to show that for every diffeomorphism F : W → V , ∀W,V ⊆ Rm, ∀ν ∈ Ωmc (V )∫
W

F ∗ν =
∫
V=F (W )

ν

Let ν = f(y) dy1 ∧ · · · ∧ dym for some f ∈ C∞c (V ). Then∫
V

ν =
∫
V

f(y) dy1 · · · dym

But F ∗ν = f(F (x)) det(dFx) dx1 ∧ · · · ∧ dxm and so∫
V

F ∗ν =
∫
W

f(F (x)) det(dFx) dx1 · · · dxm

=
∫
W

f(F (x))
∣∣det(dFx)

∣∣dx1 · · · dxm

=
∫
W

f(y) dy1 · · · dym

where the last equality is holds by the change of variables formula. �

Step 3. General case: Let µ ∈ Ωmc (M) be arbitrary. Pick an atlas which gives M its orientation, say
{ϕα : Uα → Rm}α∈A. Since suppµ is compact ∃α1, . . . , αk such that suppµ ⊆ Uα1 ∪ · · · ∪ Uαk . Let
U0 = M \ suppµ. Let {ρ0, . . . , ρk} be a partition of unity subordinate to {U0, Uα1 , . . . , Uαk}, i.e.
supp ρ0 ⊆M \ suppµ, supp ρj ⊆ Uαj for j ≥ 1. Now define∫

M

µ def=
k∑
j=1

∫
Uαj

ρjM

We need to check that the right-hand side does not depend on choices. Suppose that {ψi : Vi →
Rm}li=1 is another collection of coordinate charts with suppµ ⊆

⋃l
i=1 Vi (with V0 = M \ suppµ).

{τi}li=0 is a partition of unity subordinate to {Vi}li=0 and det
(

d(ϕαj ◦ ψ−1
i )
)
> 0 for all i, j. Then∫

ψi(Vi∩Uαj )
(ψ−1
i )∗ρjτiµ =

∫
ϕαj (Vi∩Uαj )

(ϕ−1
αj )∗ρjτiµ

by Proposition 24.9 and therefore∑
j

∫
Uαj

(ρjµ) =
∑
j

∫
ϕαj (Uαj )

(ϕαj )
∗(ρjµ)

=
∑
j

∫
ϕαj (Uαj )

(ϕαj )
∗ρj(

∑
i

τiµ)

=
∑
i,j

∫
ϕαj (Uαj∩Vi)

(ϕαj )
∗ρjτiµ

=
∑
i,j

∫
ψi(Uαj∩Vi)

(ψ−1
i )∗ρjτiµ

=
∑∫

Vi

τiµ

We conclude that
∫
M

: Ωmc (M) → R is well-defined. Note that it does depend on the choice of an
orientation.
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